N89-11768

169455 158

TECHNOLOGY NOISINAOE SPACE

CRYOGENIC FLUID

DR. LARRY A. DIEHL

NASA LEWIS RESEARCH CENTER

September 12-13, 1988

PRECEDING PAGE BLANK NOT FILMED

SPACE PROPULSION PROGRAM AREAS

BASER&T

PATHFINDER

ON-BOARD

CHEMICAL TRANSFER

LUNAR

ADVANCED CONCEPTS

CARGO VEHICLE

ORBIT TRANSFER

MAJOR THRUSTS

CHEMICAL PROPULSION

- LOX/LH₂
- EXPANDER CYCLE

ELECTRIC PROPULSION

- MPD
- ION

CHEMICAL TRANSFER PROPULSION

PROGRAM OBJECTIVES

- PROVIDE VALIDATED TECHNOLOGY BASE FOR HIGH PERFORMANCE, SPACE BASED, THROTTLEABLE, LOX/HYDROGREN EXPANDER CYCLE ENGINES
 - VALIDATION AT COMPONENT AND ENGINE SYSTEMS LEVEL
 - RESPONSIVE TO CONCURRENT MISSION STUDIES
- ENABLE SIGNIFICANT REDUCTIONS IN ON-ORBIT PROPELLANT MASS REQUIRED FOR LUNAR/PLANETARY TRANSFER AND DESCENT/ASCENT VEHICLE OPERATIONS

TECHNOLOGY ISSUES

- HIGH PRESSURE ENGINE OPERATION (PERFORMANCE)
- DEEP THROTTLING WITH MINIMUM PERFORMANCE LOSS
- LONG-LIFE, HIGH RELIABILITY DESIGN CAPABILITY
- DESIGN FOR ON-ORBIT MAINTAINABILITY
- AUTOMATED FLIGHT READINESS OPERATIONS
- FAULT-TOLERANT ENGINE OPERATIONS METHODOLOGY

CHEMICAL TRANSFER PROPULSION

PROGRAM DESCRIPTION

• Responsible Centers: LeRC (N. Hannum) & MSFC (S. McIntyre)

MILESTONES

•	COMPONENT TECHNOLOGY VERIFICATION	FY 1992
•	TESTBED SYSTEM PERFORMANCE VALIDATION	FY 1994
•	AUTOMATED INSPECTION/CHECKOUT TECHNIQUES DEMONSTRATED	FY 1996
•	HEALTH MONITORING/CONTROL SYSTEM DEFINED	FY 1997

FAULT TOLERANT ENGINE OPS DEMONSTRATED FY 1999

CHEMICAL TRANSFER PROPULSION

DELIVERABLES

COMPUTER CODES
 FOR SIMULATING INTERNAL ENGINE

PROCESSES, DEFINING LOADS, PREDICTING PERFORMANCE. LIFE AND ENGINE TRANSIENT

AND STEADY STATE OPERATIONS

• ADVANCE DESIGN CONCEPTS FOR EXTENDING COMPONENT LIFE, ENHANCING

PERFORMANCE, OPERATIONS AND CONTROLS

• DIAGNOSTICS FOR COMPONENT CONDITION MONITORING AND

INCIPIENT FAILURE DETECTION AND

CORRECTIONS

• EXPERIMENTAL DATA BASE FOR VALIDATION OF ADVANCED DESIGN

CONCEPTS AND COMPUTER CODES

• OPERATING ENGINE SYSTEM FOR DEVELOPMENT PROGRAM PROBLEM

SOLVING AND PRODUCT IMPROVEMENTS

CARGO VEHICLE PROPULSION

PROGRAM OBJECTIVES

• ESTABLISH FEASIBILITY OF ELECTRIC PROPULSION WITH

Isp > 4000 sec EFFICIENCY > 0.60 SPECIFIC MASS < 10 kg/kw SCALABLE TO MULTI-MEGAWATT

DURABILITY FOR TOTAL IMPULSE OVER 108 N-sec PER ENGINE

TECHNOLOGY ISSUES

- SCALE-UP OF ION OPTICS TO HIGH POWER
- MPD EFFICIENCY AND LIFE FOR BOTH APPLIED FIELD AND SELF FIELD
- LIFE EVALUATION METHODS

FACILITIES

SPACE PROPULSION TECHNOLOGY DIVISION

CARGO VEHICLE PROPULSION

PROGRAM DESCRIPTION

Responsible Centers: LeRC (D.Byers) & JPL (J.Stocky)

CARGO VEHICLE PROPULSION

DELIVERABLES

- BY 1993 PROVIDE:
 - 0.5 MW PERFORMANCE AND LIFE EVALUATION
 - SELF FIELD MPD
 - INDUCED FIELD MPD
 - ION THRUSTER

MEGAWATT SYSTEM REQUIREMENT AND CONCEPT DEFINITION

0.5 MW (STEADY STATE) FACILITY AND EVALUATION OF FACILITY IMPACTS

CONCEPT SELECTION FOR PHASE II FOCUSED PROGRAM

- FOCUSED TECHNOLOGY PROGRAM (1994-98)
- FLIGHT VALIDATION PROGRAM (1998 →)

ON-BOARD PROPULSION

PROGRAM DESCRIPTION

• Responsible Center: Lewis Research Center (D. Byers)

TASK	FY'88	FY'89	FY'90	FY'91	FY'92
Low Thrust Chemical	2600K 5LB Rocket	Integral H/O	Hot Rocket Scaling Tech.	Integrated H/O Rocket Demo	
	1000 Hour, 500 Cycle	10K Hour 5KW Ion	KW Arcjet Interface	10 KW lon Eng. Model	*1KW Arcjet
Electric	Arcjet	Feas.	Evaluation	System	
Fundamentals	Arcjet Pl Definiti		1 (10)30	DSMC Plume Code Verif	Unified Rocket Code Verif.
* Separate Program. Not Approved					

LUNAR/PLANETARY PROPULSION TECHNOLOGY

MAJOR THRUSTS

PROPULSION/TRAJECTORY STUDIES

- •INJECTION PROPULSION
- •ASCENT/DESCENT PROPULSION
- •MIXED MODE

COMBUSTION STUDIES OF PROPELLANT OPTIONS

- •GELLED METALLIC MONOPROPELLANTS
- **•LIQUIFIED ATMOSPHERES**
- **•LIQUID BI-PROPELLANTS**

LUNAR/PLANETARY PROPULSION TECHNOLOGY

- •THRUST CHAMBER & SYSTEM TECH.
- PROPELLANT GELLING
- •THRUST CHAMBER COOLING
- •PROPELLANT FEED SYSTEMS

PROPELLANT PRODUCTION STUDIES

- •O2/CO SEPARATION/PRODUCTION
- •LUNAR O2 PRODUCTION
- **•LUNAR ALUMINUM PRODUCTION**

LUNAR/PLANETARY PROPULSION TECHNOLOGY

PROGRAM DESCRIPTION

• Responsible Centers:

Propulsion Propellant Production LeRC JPL Carl A. Aukerman Jack Stocky

	FY'89	FY'90	FY'91	FY'92	FY'93
Milestones	O ₂ /CO Combustion		Gelled Metallized Combustion	Liquid Bi-Prop	O ₂ /CO Separation

ADVANCED CONCEPTS

OBJECTIVE

• Theoretical & Experimental Research on Breakthru Propulsion

MAJOR THRUSTS

- Nuclear Fission/Fusion
- Advanced Electric
- Antimatter & Energetic Propellants Concept/Mission Analyses

PROGRAM DESCRIPTION

Responsible Centers: LeRC (D.Byers) & JPL (J.Stocky)

TASK	FY'88	FY'89	FY'90	FY'91	FY'92
Nuclear Fission/Fusion Advanced Electric Antimatter/Energetic Props. Concept/Mission Analyses	KW μWave Rocket	Nuc. Prop. Assessments RF Thruster Demo Anti. Mat ICF Def. Fusion Mission Eval.		Mag. Nozzle Definition p. Study emplete	Electrodeless Rocket Feas. Anti. Mat. Sys. Eval.

PROJECT PATHFINDER CRYOGENIC FLUID DEPOT

FLUID MANAGEMENT TECHNOLOGY

OBJECTIVE

TO DEVELOP AND VALIDATE THE TECHNOLOGY REQUIRED TO PERFORM STORAGE, SUPPLY, AND TRANSFER OF SUBCRITICAL CRYOGENIC LIQUIDS IN A MICROGRAVITY SPACE ENVIRONMENT

TECHNOLOGY AREAS

- LIQUID STORAGE
- O LIQUID SUPPLY
- O LIQUID TRANSFER
- FLUID HANDLING
- ADVANCED INSTRUMENTATION
- TANK MATERIALS AND STRUCTURES

177

PROJECT PATHFINDER CRYOGENIC FLUID DEPOT

Lewis Research Center

OAST

PROGRAM OBJECTIVES

DEVELOPMENT OF DEPOT CONCEPTUAL DESIGNS

PERFORMANCE OF CRITICAL RESEARCH AND ADVANCEMENT OF TECHNOLOGY READINESS LEVELS IN THE AREAS OF:

FLUID MANAGEMENT
DEPOT OPERATIONS
MATERIALS AND STRUCTURES
ORBITAL OPERATIONS AND LOGISTICS
SAFETY

DEFINITION OF IN-SPACE EXPERIMENT REQUIREMENTS

CENTER FOCUS

LEWIS RESEARCH CENTER (P. SYMONS)

_			